

Phosphorus Reduction through Electrodialysis in Pharmaceutical Reverse Osmosis Reject

Background

Overview

Perrigo, a pharmaceutical company located in Allegan, Michigan, produces United States Pharmacopeia (USP) purified water for use in their manufacturing processes. A reverse osmosis (RO) system is used to filter this water. Figure 1 shows Perrigo's plant 4. Allegan has a high phosphorus concentration in the city water supply, and when that water undergoes RO the phosphorus is concentrated further. The RO reject water exceeds the Total Maximum Daily Load¹ for phosphorus discharge, shown in Equation 1. Therefore, treatment at the city sewer treatment facility is required which costs thousands of dollars yearly. Figure 2 shows an example of what a commercial RO system looks like.

$$TMDL = \sum WLA + \sum LA + MOS$$
 (1)

WLA = Waste load Allocations (point source) (mg/L) LA = Load allocation (nonpoint source) (mg/L) MOS = Margin of Safety (mg/L)

By implementing an in-house phosphorus treatment system onsite, the team aims to reduce costs and introduce a long-term solution for further regulations on discharge.

Figure 1. Perrigo Tablet Manufacturing Plant 4

Problem Statement

Design and perform a feasibility analysis on in-house phosphorus treatment systems to reduce phosphorus levels in Perrigo's RO reject water.

Figure 2. Example of Reverse Osmosis system

Assumptions

- Without current NPDES permits and updated EPA limits, the team will aim for a phosphorus limit between mg/L
- Cost calculated using the six-tenths rule⁴ is accurate to the actual cost from the manufacturer in contact with Perrigo.
- Implementation costs are between
- \$20,000 \$150,000.

Briya Berry, Lizzy Cross, Swathi Kambhatla, Nikolay Siratskiy **Client: Dave Young Faculty Advisor: Dr. Jade Mitchell, Dr. Emily Julien Objectives Data Collection Selected Design**

- Maintain RO rejected Phosphorus water levels between
- Phosphorus removal system return on investment (ROI) \leq 3 years
- Phosphorus removal system can maintain an average flow rate of gpm
- Develop system design with available room size of ft^2
- Analyze contaminant levels within RO reject water

Constraints

- Adherence to EPA regulations Clean Water Act³
 - Regulations on industrial non-point source pollution of recreational waterways

 - Mandates updated SWPPP's
- Adherence to EGLE regulations (Electronic Code of Federal Regulation, n.d.) NPDES Wastewater Discharge General Permit
 - Regulates discharge limits for potentially contaminated wastewater into lakes and rivers
 - Michigan Act 451², parts 31 and 41
 - Pt. 31: companies should not knowingly discharge contaminated water into any water sink leading to the Great Lakes
 - Pt. 41: regulation of sewer system standards in companies and ensures sewer discharge is not harmful to the environment
- Keep annual operating cost below

Design Alternatives

Design alternatives were scored using a decision matrix based on the following weighted criteria:

- 1. Phosphorus removal rate 20% 2. Regulation adherence – 20% 3. Operational cost -15%

- 4. Flow rate 14%
- 5. Return on Investment 13%
- 6. Design size 11%
- 7. Time to Implement -7%

Disc Filtration (355)

- utilizes a high-rate tertiary filter
- Spatial capacity, system capacity, and potential operating costs causes concern for feasibility.

Lateral Sand Filtration (375)

- Wastewater pumped through the filter bed. Purified as it is pumped upwards through
- the sand.
- Systems capacity exceed spatial and time implementation requirements.

Electrodialysis (430)

mg/L

Selected design: Electrodialysis

- Easiest adherence to regulations
- Projected removal rate of up to 95%
- Return on investment < 3 years
- Ease of scalability

What is electrodialysis?

- Placement of anion and cation exchange membranes between two electrodes in a flow chamber
- lons are separated out from the water input, creating a concentrate and dilute stream. Figure 3 shows an example system. Figure 4 is a process flow of our proposed solution

Figure 3. Diagram of electrodialysis process to be used in the manufacturing line.

Figure 4: Process flow diagram of the current vs proposed new system involving electrodialysis.

Safety Considerations

- •Operating safety warnings
 - Electric shock
 - Production of concentrated/new chemical
 - Danger of automatic start up
 - Production of dangerous media at the electrodes

•Safety Measures

- Accident prevention regulations
 - OSHA Electrical Standard 1910.301
- Safety and operating provisions
 - Standard Operating Procedures
 - Proper Training
- Environmental protection provisions
- NPDES Wastewater Discharge **General Permit**
- Michigan Act 451, parts 31 and 41.

- RO reject water was collected from Perrigo's Plant with the highest phosphorus concentration
- Tested on a small scale electrodialysis system at the Anaerobic Digestion Research and Education Center (ADREC), shown in Figure 5
- Three total runs were performed. Testing for:
 - Phosphorus
 - Sulfate
 - Sulfide negligible
- Each run was conducted until the conductivity was below 0.1 mS cm

Figure 5. Anaerobic Digestion Research and Education Center (ADREC) electrodialysis system used for testing.

Results

- Conductivity decreased as experiment progressed, shown in in Figure 6
- The average phosphorus removal efficiency from this test was 75.69%, shown in Figure 7
- This experiment confirmed that electrodialysis can successfully remove phosphorus within the approved range, specified by Perrigo

Figure 7: Phosphorus concentration during electrodialysis testina

Economics

- Mock numbers are used
- The cost analysis expects:

sewage costs.

Variable	Calculation
Cost estimation of two systems using six-tenths rule (\$)	$C_{Perrigo} = 0$ Size _{Perrigo} = 2,102 Size _{System} = 91,22 C _{System} = \$297,00
Energy costs based on current Allegan rates (\$)	$\left(4 \frac{k}{10}\right)$
Sewage costs based on current Allegan rates and literature review (\$)	(2,10)

ROI high cost.

Variable	Calculatior
Maintenance cost of system based on literature review (\$)	\$31
ROI based on lower implementation cost and literature review (\$)	ROIL
	$C_{\text{Initial.L}} = \$ 24,11$ $C_{\text{Operating}} = \$16,9$ $C_{\text{New.Operating}} = \8
ROI based on higher implementation cost and literature review (\$)	ROI _{HI}
	$C_{\text{Initial.H}} = $34,51$ $C_{\text{Operating}} = $16,9$

Summary

•Implementing an electrodialysis system is expected to:

- up to 52%
- ROI between 2.7 3.9 years
- levels between

Recommendation

- Perrigo should implement the electrodialysis system
- gather design specifications

Acknowledgments

The team would like to extend a huge thank you to Earl Batenburg Jr., Dave Young, Dr. Liao, Blake Smerigan, Dr. Reese, Dr. Jeong, Dr. Mitchell, and Dr. Julien.

Select References

[1]Environmental Protection Agency. (2023, November 14). Overview of Total Maximum Daily Loads (TMDLs). EPA. https://www.epa.gov/tmdl/overview-totalmaximum-daily-loads-tmdls [2]Michigan Legislature. (1994). Natural Resources and Environmental Protection Act, Act 451 of 1994. https://legislature.mi.gov/Laws/MCL?objectName=MCL-ACT-451-OF-1994 [3]U.S. Environmental Protection Agency. (2013, August 20). Clean Water Act (CWA) and Federal Facilities. US EPA. https://www.epa.gov/enforcement/clean-wateract-cwa-and-federal-facilities [4] Sweeting, J. (1997). Project Cost Estimating: Principles and Practice. IChemE. https://books.google.com/books?hl=en&lr=&id=7K8rjPtiwlwC&oi=fnd &pg=PA6&dq=six+tenth+rule+cost+estimation&ots=eLIWVKR9GS&sig=bnTeCg jkvlqWbkFdulX1UeF9u2k#v=onepage&q=six&f=false

Reduce RO reject operating cost by

Reduce RO reject Phosphorus water mg/L

Continue contacting manufacturers to